$f-Linear\ Algebra$ f ${f 01qdc}$

nag_real_apply_q (f01qdc)

1. Purpose

nag_real_apply_q (f01qdc) performs one of the transformations

$$B := QB$$
 or $B := Q^T B$,

where B is an m by ncolb real matrix and Q is an m by m orthogonal matrix, given as the product of Householder transformation matrices.

This function is intended for use following nag_real_qr (f01qcc).

2. Specification

3. Description

Q is assumed to be given by

$$Q = (Q_n Q_{n-1} \dots Q_1)^T,$$

 Q_k being given in the form

$$Q_k = \begin{pmatrix} I & 0 \\ 0 & T_k \end{pmatrix},$$

where

$$T_k = I - u_k u_k^T$$
$$u_k = \begin{pmatrix} \zeta_k \\ z_k \end{pmatrix},$$

 ζ_k is a scalar and z_k is an (m-k) element vector. z_k must be supplied in the (k-1)th column of \mathbf{a} in elements $\mathbf{a}[k][k-1],\ldots,\mathbf{a}[m-1][k-1]$ and ζ_k must be supplied either in $\mathbf{a}[k-1][k-1]$ or in $\mathbf{zeta}[k-1]$, depending upon the parameter **wheret**.

To obtain Q explicitly B may be set to I and premultiplied by Q. This is more efficient than obtaining Q^T .

4. Parameters

trans

Input: the operation to be performed as follows:

trans = NoTranspose, perform the operation B := QB.

trans = Transpose or ConjugateTranspose, perform the operation $B := Q^T B$.

Constraint: trans must be one of NoTranspose, Transpose or ConjugateTranspose.

wheret

Input: indicates where the elements of ζ are to be found as follows:

where $\mathbf{I} = \mathbf{Nag} \cdot \mathbf{Elements} \cdot \mathbf{In}$, the elements of ζ are in \mathbf{a} .

where t = NagElementsSeparate, the elements of ζ are separate from a, in zeta.

Constraint: wheret must be Nag_ElementsIn or Nag_ElementsSeparate.

 \mathbf{m}

Input: m, the number of rows of A.

Constraint: $m \ge n$.

[NP3275/5/pdf] 3.f01qdc.1

n

Input: n, the number of columns of A.

When $\mathbf{n} = 0$ then an immediate return is effected.

Constraint: $\mathbf{n} \geq 0$.

a[m][tda]

Input: the leading m by n strictly lower triangular part of the array \mathbf{a} must contain details of the matrix Q. In addition, when $\mathbf{wheret} = \mathbf{Nag_ElementsIn}$, then the diagonal elements of \mathbf{a} must contain the elements of ζ as described under the parameter \mathbf{zeta} below.

When where t = NagElementsSeparate, the diagonal elements of the array t = n are referenced, since they are used temporarily to store the ζ_k , but they contain their original values on return.

tda

Input: the second dimension of the array \mathbf{a} as declared in the function from which nag_real_apply_q is called.

Constraint: $tda \ge n$.

zeta[n]

Input: if where $t = Nag_ElementsSeparate$, the array zeta must contain the elements of ζ . If zeta[k-1] = 0.0 then T_k is assumed to be I otherwise zeta[k-1] is assumed to contain ζ_k . When where $t = Nag_ElementsIn$, zeta is not referenced and may be set to the null pointer, i.e., (double *)0.

ncolb

Input: ncolb, the number of columns of B.

When $\mathbf{ncolb} = 0$ then an immediate return is effected.

Constraint: $\mathbf{ncolb} \geq 0$.

b[m][tdb]

Input: the leading m by ncolb part of the array \mathbf{b} must contain the matrix to be transformed. Output: \mathbf{b} is overwritten by the transformed matrix.

tdb

Input: the second dimension of the array ${\bf b}$ as declared in the function from which nag_real_apply_q is called.

Constraint: $tdb \ge ncolb$.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_BAD_PARAM

On entry, parameter trans had an illegal value.

On entry, parameter **wheret** had an illegal value.

NE_2_INT_ARG_LT

```
On entry, \mathbf{m} = \langle value \rangle while \mathbf{n} = \langle value \rangle. These parameters must satisfy \mathbf{m} \geq \mathbf{n}.
```

On entry, $\mathbf{tda} = \langle value \rangle$ while $\mathbf{n} = \langle value \rangle$. These parameters must satisfy $\mathbf{tda} \geq \mathbf{n}$.

On entry, $\mathbf{tdb} = \langle value \rangle$ while $\mathbf{ncolb} = \langle value \rangle$. These parameters must satisfy $\mathbf{tdb} \geq \mathbf{ncolb}$.

NE_INT_ARG_LT

On entry, **n** must not be less than 0: $\mathbf{n} = \langle value \rangle$.

On entry, **ncolb** must not be less than 0: $ncolb = \langle value \rangle$.

NE_ALLOC_FAIL

Memory allocation failed.

6. Further Comments

The approximate number of floating-point operations is given by 2n(2m-n)ncolb.

 $3.f01qdc.2 \hspace{3.2cm} [NP3275/5/pdf]$

 $f-Linear\ Algebra$ f ${f 01qdc}$

6.1. Accuracy

Letting C denote the computed matrix $Q^T B$, C satisfies the relation

$$QC = B + E$$

where $||E|| \le c\epsilon ||B||$, ϵ is the **machine precision**, c is a modest function of m and ||.|| denotes the spectral (two) norm. An equivalent result holds for the computed matrix QB. See also Section 6.1 of nag_real_qr (f01qcc).

6.2. References

Golub G H and Van Loan C F (1989) *Matrix Computations* (2nd Edn) Johns Hopkins University Press, Baltimore.

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Clarendon Press, Oxford.

7. See Also

nag_real_qr (f01qcc)

8. Example

To obtain the matrix $Q^T B$ for the matrix B given by

$$B = \begin{pmatrix} 1.10 & 0.00 \\ 0.90 & 0.00 \\ 0.60 & 1.32 \\ 0.00 & 1.10 \\ -0.80 & -0.26 \end{pmatrix}$$

following the QR factorization of the 5 by 3 matrix A given by

$$A = \begin{pmatrix} 2.0 & 2.5 & 2.5 \\ 2.0 & 2.5 & 2.5 \\ 1.6 & -0.4 & 2.8 \\ 2.0 & -0.5 & 0.5 \\ 1.2 & -0.3 & -2.9 \end{pmatrix}.$$

8.1. Program Text

```
/* nag_real_apply_q(f01qdc) Example Program
 * Copyright 1990 Numerical Algorithms Group.
 * Mark 1, 1990.
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf01.h>
#define MMAX 20
#define NMAX 10
#define NCBMAX 5
main()
  Integer tda = NMAX;
  Integer tdb = NCBMAX;
  double zeta[NMAX], a[MMAX][NMAX], b[MMAX][NCBMAX];
  Integer i, j, m, n, ncolb;
  Vprintf("f01qdc Example Program Results\n");
  Vscanf(" %*[^\n]"); /* skip headings in data file */
```

[NP3275/5/pdf] 3.f01qdc.3

```
Vscanf(" %*[^\n]");
       Vscanf("%ld%ld", &m, &n);
       if (m > MMAX | | n > NMAX)
            \label{eq:printf("m or n is out of range.\n");} $$ Vprintf("m = %2ld, n = %2ld\n", m, n); $$
          }
       else
          {
            Vscanf(" %*[^\n]");
            for (i = 0; i < m; ++i)
              for (j = 0; j < n; ++j)
                Vscanf("%lf", &a[i][j]);
            Vscanf(" %*[^\n]");
Vscanf("%ld", &ncolb);
            if (ncolb > NCBMAX)
                 Vprintf("ncolb is out of range.\n");
                 Vprintf("ncolb = %2ld\n", ncolb);
            else
              {
                 Vscanf(" %*[^\n]");
                for (i = 0; i < m; ++i)
for (j = 0; j < ncolb; ++j)
                     Vscanf("%lf", &b[i][j]);
                 /* Find the QR factorization of A */
                 f01qcc(m, n, (double *)a, tda, zeta, NAGERR_DEFAULT);
                 /* Form Q'*B */
                 f01qdc(Transpose, Nag_ElementsSeparate, m, n, (double *)a, tda, zeta,
                         ncolb, (double *)b, tdb, NAGERR_DEFAULT);
                 Vprintf("Matrix Q'*B\n");
                 for (i = 0; i < m; ++i)
                     for (j = 0; j < ncolb; ++j)
    Vprintf(" %8.4f", b[i][j]);</pre>
                     Vprintf("\n");
              }
          }
       exit(EXIT_SUCCESS);
8.2. Program Data
     f01qdc Example Program Data
     Values of m and n.
       5
     Matrix A
       2.0 2.5
2.0 2.5
                     2.5
                     2.5
       1.6 -0.4
                    2.8
       2.0 -0.5
                   0.5
       1.2 -0.3 -2.9
     Value of ncolb
       2
     Matrix B
       1.1 0.0
            0.0
1.32
       0.9
       0.6
             1.1
       0.0
      -0.8 -0.26
```

 $3.f01qdc.4 \\ [NP3275/5/pdf]$

f – $Linear\ Algebra$ ${f f01qdc}$

8.3. Program Results

```
f01qdc Example Program Results
Matrix Q'*B
-1.0000 -1.0000
-1.0000 1.0000
-1.0000 -1.0000
-0.1000 0.1000
-0.1000 -0.1000
```

 $[NP3275/5/pdf] \\ 3.f01qdc.5$